鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

反射電子像を用いたベイナイト鋼中のマルテンサイトの選択可視化と機械学習を活用した相分率評価
井本 浩史 佐藤 馨小形 健二
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: TETSU-2024-103

この記事には本公開記事があります。
詳細
抄録

Multi-phase steels are often used to realize a combination of high strength and toughness and/or ductility. To optimize their mechanical properties, it is vital to accurately evaluate the grain size, hard phase size and distribution, and dislocation density. In this paper, we studied a new method for evaluating the morphology and phase fraction of the hard phase, i.e., the martensite-austenite constituent (M-A), which is an important component that governs the mechanical properties of high strength steels. Using a scanning electron microscope, martensite can be selectively visualized with a bright contrast by collecting high-angle backscattered electrons. This method identifies only martensite in isolation from other phases, whereas both martensite and austenite are highlighted with the conventional two-step etching method. In addition, machine learning image analysis allows accurate extraction of martensite even in the presence of inhomogeneous backscattered electron image contrast in the matrix. This method provides an accurate and simple evaluation of the morphology of martensite in multi-phase steels over a large area.

著者関連情報
© 2024 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top