鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
樹脂複合鋼板の材料設計への有限要素法シミュレーションの応用
橋本 浩二江嶋 瑞男滝田 道夫牧野内 昭武
著者情報
ジャーナル フリー

1989 年 75 巻 9 号 p. 1673-1679

詳細
抄録

Elastic-plastic finite element method has been applied to the bending process of steel-plastic laminated sheets. It is confirmed that the forming defects such as deformed geometries, which are often found in bending process of steel-plastic laminated sheets, can be simulated, for different kinds of core resins and different thickness compositions of skin sheets, exactly by using this simulation method.
Computational results show some important aspects of material design, by which deformed geometries of steel-plastic laminated sheets are expected to be eliminated. The findings obtained here are as follows;
(1) Deformed geometries of bending process can be eliminated by raising the yield strength or plasticity coefficient of resin. However, this may be accompanied by the thickness reduction of outer skin sheets, resulting in a fracture.
(2) Deformed geometries can be decreased by increasing the thickness ratio of inner and outer steel sheets. This method is more effective when thinner skin steel sheet is used for outer side.
(3) The effect of using steel sheets with different yield strength for inner and outer sheets is smaller than those of using wide die opening and using skin sheets of different thickness for inner and outer sheets.

著者関連情報
© 一般社団法人 日本鉄鋼協会
前の記事 次の記事
feedback
Top