Thermal Medicine
Online ISSN : 1882-3750
Print ISSN : 1882-2576
ISSN-L : 1882-2576
Original Paper
Synthesis and Characterization of Magnetic Iron Oxide Nanoparticles Suitable for Hyperthermia
JEYADEVAN BALACHANDRANTAKASHI ATSUMIMAKOTO SUTORYO KASUYAYOSHINORI SATOKAZUYUKI TOHJI
Author information
JOURNAL FREE ACCESS

2009 Volume 25 Issue 2 Pages 43-52

Details
Abstract

Heat dissipation characteristics and magnetic properties of iron oxide nanoparticles (IOPs) synthesized by co-precipitation and thermal decomposition are reported. IOPs were successfully synthesized by thermally decomposing iron pentacarbonyl in an atmospheric condition. According to transmission electron microscopy, the particle diameter varied between 3.0 and 12.2 nm depending on the concentration of oleic acid and reaction time. On the other hand, coprecipitated IOPs with an average diameter of 10.2 nm were synthesized by introducing ammonia solution to the aqueous solution of iron sulfate and iron chloride mixture. The heat dissipation characteristics of the isoparaffin dispersion of IOPs were measured by exposing a magnetic field strength and frequency of 3.2 kA/m and 600 kHz respectively. For a specific time, the coprecipitated particles with an average diameter of 10.2 nm exhibited a temperature rise of 77 K, whereas the temperature rise exhibited by particles synthesized by thermal decomposition with an average diameter of 11.3 nm was 14 K. On the other hand, particles with an average diameter of 3.0 nm did not generate significant heat. The magnetic property of the samples, especially the temperature at which the magnetic susceptibility becomes maximum (blocking temperature) was measured using superconducting quantum interference device. The results suggested that the sample with higher blocking temperature generated more heat.

Content from these authors
© 2009 Japanese Society for Thermal Medicine
Previous article Next article
feedback
Top