抄録
With the multi-combustion technology, the combustion in a hybrid rocket engine (HRE) can be temporarily stopped via oxidizer throttling. In this paper, two types of HREs, one with multi-combustion technology and the other without, are compared to investigate the effects of multi-combustion on the flight performance of launch vehicles (LVs). Non-dominated Sorting Genetic Algorithm-II (NSGA-II) which was a multi-objective evolutionary algorithm (MOEA) was applied to solve the design problems using real-number coding and the Pareto ranking method. To investigate the effects of the multi-combustion on flight performance of LV with HRE, three design problems were considered. The first case was the maximization of the flight altitude and the minimization of the gross weight. The second case was the minimization of the maximum acceleration and the minimization of the gross weight. The final case was the maximization of the flight downrange and the minimization of the gross weight. Many non-dominated solutions were obtained by NSGA-II, and a trade-off was observed between the two objective functions in each case. MOEA results were visualized using a parallel coordinate plot. According to the exploration result, it was found that the multi-combustion of HRE was effective to reduce the maximum acceleration. Such ability could be expected to reduce the shock load to payloads carried by the LV with HRE.