人工知能学会論文誌
Online ISSN : 1346-8030
Print ISSN : 1346-0714
ISSN-L : 1346-0714
論文
回帰分析を用いた概念クラスタリングアルゴリズム
月本 洋佐藤 誠
著者情報
ジャーナル フリー

2001 年 16 巻 3 号 p. 344-352

詳細
抄録
This paper presents conceptual clustering algorithms using regression analysis. The basic idea is that given data can be classified to the class “existing” and so conceptual clustering(unsupervised learning) is transformed to classification (supervised learning). The algorithms consist of transforming given data to the data with a class, obtaining a function({0, 1}n →[0, 1]) by regression analysis, approximating the function by a Boolean function, and generating a concept hierarchy from the Boolean function. Regression analysis includes linear regression analysis and nonlinear regression analysis by neural networks. The algorithms can perform the multiple classification and generate simple clusters. The algorithms using linear regression analysis and neural networks have been applied to real data. Results show that the algorithm using neural networks works well.
著者関連情報
© 2001 JSAI (The Japanese Society for Artificial Intelligence)
前の記事 次の記事
feedback
Top