Transactions of the Japanese Society for Artificial Intelligence
Online ISSN : 1346-8030
Print ISSN : 1346-0714
Invited Paper
The Frontiers of Real-coded Genetic Algorithms
Shigenobu Kobayashi
Author information
JOURNALS FREE ACCESS

Volume 24 (2009) Issue 1 Pages 147-162

Details
Download PDF (629K) Contact us
Abstract

Real-coded genetic algorithms (RCGA) are expected to solve efficiently real parameter optimization problems of multimodality, parameter dependency, and ill-scale. Multi-parental crossovers such as the simplex crossover (SPX) and the UNDX-m as extensions of the unimodal normal distribution crossove (UNDX) show relatively good performance for RCGA. The minimal generation gap (MGG) is used widely as a generation alternation model for RCGA. However, the MGG is not suited for multi-parental crossovers. Both the SPX and the UNDX-m have their own drawbacks respectively. Therefore, RCGA composed of them cannot be applied to highly dimensional problems, because their hidden faults appear. This paper presents a new and robust faramework for RCGA. First, we propose a generation alternation model called JGG (just generation gap) suited for multi-parental crossovers. The JGG replaces parents with children completely every generation. To solve the asymmetry and bias of children distribution generated by the SPX and the UNDX-m, an enhanced SPX (e-SPX) and an enhanced UNDX (e-UNDX) are proposed. Moreover, we propose a crossover called REX(φ,n+k) as a generlization of the e-UNDX, where φ and n+k denote some probability distribution and the number of parents respectively. A concept of the globally descent direction (GDD) is introduced to handle the situations where the population does not cover any optimum. The GDD can be used under the big valley structure. Then, we propose REXstar as an extention of the REX(φ,n+k) that can generate children to the GDD efficiently. Several experiments show excellent performance and robustness of the REXstar. Finally, the future work is discussed.

Information related to the author
© 2009 JSAI (The Japanese Society for Artificial Intelligence)
Previous article Next article

Recently visited articles
feedback
Top