人工知能学会論文誌
Online ISSN : 1346-8030
Print ISSN : 1346-0714
ISSN-L : 1346-0714
原著論文
Espresso 型ブートストラッピング法における意味ドリフトのグラフ理論に基づく分析
語義曖昧性解消における評価
小町 守工藤 拓新保 仁松本 裕治
著者情報
ジャーナル フリー

2010 年 25 巻 2 号 p. 233-242

詳細
抄録
Bootstrapping has a tendency, called semantic drift, to select instances unrelated to the seed instances as the iteration proceeds. We demonstrate the semantic drift of Espresso-style bootstrapping has the same root as the topic drift of Kleinberg's HITS, using a simplified graph-based reformulation of bootstrapping. We confirm that two graph-based algorithms, the von Neumann kernels and the regularized Laplacian, can reduce the effect of semantic drift in the task of word sense disambiguation (WSD) on Senseval-3 English Lexical Sample Task. Proposed algorithms achieve superior performance to Espresso and previous graph-based WSD methods, even though the proposed algorithms have less parameters and are easy to calibrate.
著者関連情報
© 2010 JSAI (The Japanese Society for Artificial Intelligence)
次の記事
feedback
Top