人工知能学会論文誌
Online ISSN : 1346-8030
Print ISSN : 1346-0714
ISSN-L : 1346-0714
原著論文
多値画像のノイズ低減のためのセルオートマトンの進化的設計手法
佐藤 正平狩野 均
著者情報
ジャーナル フリー

2010 年 25 巻 2 号 p. 311-319

詳細
抄録
In this paper, we propose a new method to obtain the transition rules of two-dimensional cellular automata (CA) that performs grayscale image processing. CA has the advantages of producing complex systems from the local interaction of simple elements, and has attracted increased research interest. The difficulty of designing CA's transition rules to perform a particular task has severely limited their applications. So, the evolutionary design of CA rules has been studied. In this method, an evolutionary algorithm was used to evolve CA. In recent years, this method has been applied to image processing. Rosin has studied the evolutionary design of two-dimensional CA to perform noise reduction, thinning and convex hulls. Batouche et al. and Slatnia et al. employed genetic algorithm to investigate the possibility of CA to perform edge detection. In the previous methods, 2-state CA was used for binary image processing. Unlike the previous methods, the present method uses 256-state CA rules to perform grayscale image processing. Gene Expression Programming (GEP) proposed by Ferreira is employed as a learning algorithm in which the chromosomes encode the transition rules as expression trees. Experimental results for the reduction of impulse noise, salt-and-pepper noise and gaussian noise show that the proposed method is equivalent to previous methods in performance and more than 100 times faster than the method proposed by Rosin. We show that the rule obtained by the proposed method employs symmetry-based strategy in the noise reduction process and this property can reduce complexity of CA.
著者関連情報
© 2010 JSAI (The Japanese Society for Artificial Intelligence)
前の記事 次の記事
feedback
Top