Transactions of the Japanese Society for Artificial Intelligence
Online ISSN : 1346-8030
Print ISSN : 1346-0714
ISSN-L : 1346-0714
Short Paper
Learning from Crowds and Experts
Hiroshi KajinoYuta TsuboiIssei SatoHisashi Kashima
Author information
JOURNAL FREE ACCESS

2013 Volume 28 Issue 3 Pages 243-248

Details
Abstract
Crowdsourcing services are often used to collect a large amount of labeled data for machine learning. Although they provide us an easy way to get labels at very low cost in a short period, they have serious limitations. One of them is the variable quality of the crowd-generated data. There have been many attempts to increase the reliability of crowd-generated data and the quality of classifiers obtained from such data. However, in these problem settings, relatively few researchers have tried using expert-generated data to achieve further improvements. In this paper, we apply three models that deal with the problem of learning from crowds to this problem: a latent class model, a personal classifier model, and a data-dependent error model. We evaluate these methods against two baseline methods on a real data set to demonstrate the effectiveness of combining crowd-generated data and expert-generated data.
Content from these authors
© 2013 JSAI (The Japanese Society for Artificial Intelligence)
Next article
feedback
Top