人工知能学会論文誌
Online ISSN : 1346-8030
Print ISSN : 1346-0714
ISSN-L : 1346-0714
特集論文「エージェント技術とその応用」
繰り返し信頼ネットワーク生成によるグループワークの公平な相互評価法の提案
芝 夢乃菅原 俊治
著者情報
ジャーナル フリー

2016 年 31 巻 6 号 p. AG-C_1-10

詳細
抄録

We propose a fair and accurate peer assessment method for group work using a multi-agent trust network. Although group work is an effective educational method, accurately assessing individual students is not easy. Mutual evaluation is often used to assess group work because students can observe the contributions of other students. However, mutual evaluation presents some potential problems to discuss such as irresponsible evaluations and collusion. Our proposed method identifies and excludes such cheating and unfair ratings on the basis of trust networks that are often used to evaluate sellers in e-market places by using customers’ ratings. We assume a group-work course in a semester in which students mutually evaluate other group members a few (three to five) times since too many chances for evaluation burden students. We introduce the iterative method for alternately generating trust networks and calculating cluster-trust values, which represent similarity of evaluations in a cluster network. Using a multi-agent simulation, we experimentally show that our method can find the irresponsible students and collusive groups and considerably improve accuracy of final marks with only a few chances for mutual evaluations. Thus, our method can provide useful information for assessments to instructors and reduce free-riders’ incentives for cheating behaviors.

著者関連情報
© 人工知能学会 2016
前の記事 次の記事
feedback
Top