Transactions of the Japanese Society for Artificial Intelligence
Online ISSN : 1346-8030
Print ISSN : 1346-0714
ISSN-L : 1346-0714
Original Paper
Analysis of User Profile for Home Location Estimation from Online Social Graph
Shiori HironakaMitsuo YoshidaKyoji Umemura
Author information
JOURNAL FREE ACCESS

2020 Volume 35 Issue 1 Pages E-J71_1-10

Details
Abstract

Users’ attributes, such as home location, are necessary for various applications, such as news recommendations and event detections. However, most real user attributes (e.g., home location) are not open to the public. Therefore, their attributes are estimated by relationships between users. A social graph constructed from relationships between users can help estimate home locations, but it is difficult to collect many relationships, such as followers’ relationships. We focus on users whose home locations are difficult to estimate, so that we can select users whose locations can be accurately estimated before collecting relationships. In this paper, we use their profiles which can be collected before collecting relationships. Then, we analyze difficult users with their profiles. As a result, we found that users whose home locations incorrectly estimated had a longer duration since the date their account was created, longer name, and longer description. In addition, the results indicated that the users whose home locations were incorrectly estimated differed from those whose home locations could not be estimated.

Content from these authors
© The Japanese Society for Artificial Intelligence 2020
Previous article Next article
feedback
Top