人工知能学会論文誌
Online ISSN : 1346-8030
Print ISSN : 1346-0714
ISSN-L : 1346-0714
原著論文
GPT-2からのbigram知識の取り出し
吉田 稔松本 和幸
著者情報
キーワード: GPT, interpretability, bigram, embedding
ジャーナル フリー

2025 年 40 巻 3 号 p. A-O65_1-23

詳細
抄録

We propose a method to extract bigram knowledge from GPT-2 models. Based on the observation that the first layer in GPT-2 is useful to predict the tokens next to the given input tokens, we propose an algorithm to use self attention heads only from the first layer to predict the next tokens. We also propose an algorithm to find contextual words that are highly related to a given bigram by applying the backpropagation method to GPT-2 parameters for the next-token prediction. Experimental results showed that our proposed algorithms to predict next words and to induce context words showed the higher average precision values than the baseline methods.

著者関連情報
© JSAI (The Japanese Society for Artificial Intelligence)
次の記事
feedback
Top