Abstract
This paper investigates the effect of turbulence models on numerical simulation of the vortical flow over a wing-body configuration at low speed and high angles of attack. Numerical simulations are conducted using Reynolds-Averaged Navier-Stokes equations with three popular turbulence models: the Spalart-Allmaras model, the Menter’s shear stress transport model, and the Launder-Sharma k–ε model. Computational results are compared with experiments. The original Spalart-Allmaras model shows excessively large dissipation in the vortical flow away from the surface, but the rotation correction indicates significant improvement in computational results. The Menter’s model predicts reasonable agreement with the experiment in details and capture vortex structures well. The Launder-Sharma k–ε model performs provides results close to those of the Menter’s model at high angles of attack. Although details of the flowfield have been simulated with large differences by different turbulence models, the choice of turbulence models is not important for prediction of aerodynamic forces.