TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
Online ISSN : 2189-4205
Print ISSN : 0549-3811
ISSN-L : 0549-3811
Efficient Prediction of Helicopter BVI Noise under Different Conditions of Wake and Blade Deformation
Yoshinobu INADAChoongmo YANGNoriki IWANAGATakashi AOYAMA
Author information
JOURNAL FREE ACCESS

2008 Volume 51 Issue 173 Pages 193-202

Details
Abstract

Predictions of helicopter BVI noise using three-dimensional Euler code with a single blade grid are conducted under three different conditions: BVI noise caused by (1) interaction between rotating blades and vortex shed from fixed wing vortex generator, (2) interaction between rotating blades and tip vortices shed from preceding blades, and (3) interaction between rotating blades with elastic deformation and shed tip vortices. In the CFD calculation, the Field Velocity Approach (FVA) and Scully’s vortex model are used to import the wake information into the calculation grid and to determine the induced velocity made by tip vortices, respectively (cases 1–3). Beddoes generalized wake model is used to prescribe the tip vortices position in the wake (cases 2 and 3). Information about blade elastic deformation is imported from HART II project experimental data into the calculation (case 3). Acoustic analyses based on Ffowcs-Williams and Hawkings (FW-H) equation are conducted subsequently in each case. The results from the calculations show good agreement with experiments in all three cases, indicating that application of FVA, Scully’s model, and Beddoes generalized wake model is effective for BVI noise prediction in this study, which is intended for low calculation cost using a single blade grid. Also, use of blade elastic deformation data in the calculation shows marked improvement in calculation precision. Consequently, the method used in this study can predict BVI noise under various conditions of wake or blade deformation with acceptable precision and low calculation cost.

Content from these authors
© 2008 The Japan Society for Aeronautical and Space Sciences
Previous article Next article
feedback
Top