TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
Online ISSN : 2189-4205
Print ISSN : 0549-3811
ISSN-L : 0549-3811
Combined Analysis of Thruster Plume Behavior in Rarefied Region by Preconditioned Navier-Stokes and DSMC Methods
Kyun Ho LEESung Nam LEEMyoung Jong YUSu Kyum KIMSeung Wook BAEK
Author information
JOURNAL FREE ACCESS

2009 Volume 52 Issue 177 Pages 135-143

Details
Abstract

Satellite attitude is usually controlled by plume exhaust from thrusters into the vacuum of space. To study the plume effects in the highly rarefied region, the Direct Simulation Monte Carlo (DSMC) method is usually used, because the plume flow field contains the entire range of flow regime from the near-continuum near the nozzle exit through the transitional state to free molecular state at the far field region from the nozzle. The purpose of this study is to investigate the behavior of a small monopropellant thruster plume in the vacuum region numerically by using the DSMC method. To obtain more accurate results, the preconditioned Navier-Stokes algorithm is introduced to calculate continuum flow fields inside the thruster to predict nozzle exit properties, which are used for inlet conditions of DSMC method. As a result, the plume characteristics in the highly rarefied flow, such as strong nonequilibrium near nozzle exit, large back flow region, etc., are investigated.

Content from these authors
© 2009 The Japan Society for Aeronautical and Space Sciences
Previous article Next article
feedback
Top