Abstract
A sensitivity analysis of a fully kinetic particle code was conducted to investigate the importance of uncertainties associated to physical parameters. A 500 W-class laboratory model magnetic-layer Hall thruster was used as the testbed. The sensitivities of the physical parameters, including thermal accommodation coefficient, anode/wall temperature, Bohm diffusion coefficient, electron injection current, cathode coupling voltage, and background pressure, were quantified one-by-one on a conservative possible range. The results suggest the wall erosion prediction is more sensitive to the physical parameters than the thrust or the discharge current. Among the physical parameters, sensitivity to the Bohm diffusion coefficient and parameters related to the neutral flow (i.e., thermal accommodation coefficient and anode/wall temperatures) were dominant. It was hence found that uncertainties in the physical parameters related to the neutral flow had comparable influence on the Bohm diffusion coefficient despite the low attention they attracted.