TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
Online ISSN : 2189-4205
Print ISSN : 0549-3811
ISSN-L : 0549-3811
Efficient Multi-objective Aerodynamic Shape Optimization of 3D Supersonic Transport Using Proper Orthogonal Decomposition
Nomin BUYANBAATARWataru YAMAZAKI
Author information
JOURNAL OPEN ACCESS

2023 Volume 66 Issue 5 Pages 147-155

Details
Abstract

In this research, a proper orthogonal decomposition (POD)-based re-parameterization approach is utilized to realize efficient multi-objective aerodynamic shape optimization (MOASO) by reducing the number of design variables, which results in reducing the number of computational fluid dynamics evaluations. The approach developed is examined in a three-dimensional wing-shape optimization problem of a supersonic transport configuration. As for the multi-objective design optimization problem, aerodynamic/sonic boom evaluations are performed to minimize the drag coefficient and sonic boom strength. By introducing a variable fidelity concept in the POD approach, the optimization problem can be solved with much smaller computational cost. Important design insights can be extracted and discussed from the most dominant (first) POD mode.

Content from these authors
© 2023 The authors. JSASS has the license to publish of this article.

This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), which permits non-commercially distribute and reproduce an unmodified in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Next article
feedback
Top