Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
CLOSED GEODESICS IN THE TANGENT SPHERE BUNDLE OF A HYPERBOLIC THREE-MANIFOLD
MÁXIMO CARRERASMARCOS SALVAI
著者情報
ジャーナル フリー

2001 年 53 巻 1 号 p. 149-161

詳細
抄録
Let $M$ be an oriented three-dimensional manifold of constant sectional curvature $-1$ and with positive injectivity radius, and $T^1 M$ its tangent sphere bundle endowed with the canonical (Sasaki) metric. We describe explicitly the periodic geodesics of $T^1 M$ in terms of the periodic geodesics of $M$: For a generic periodic geodesic $(h,v)$ in $T^1 M$, $h$ is a periodic helix in $M$, whose axis is a periodic geodesic in $M$; the closing condition on $(h,v)$ is given in terms of the horospherical radius of $h$ and the complex length (length and holonomy) of its axis. As a corollary, we obtain that if two compact oriented hyperbolic three-manifolds have the same complex length spectrum (lengths and holonomies of periodic geodesics, with multiplicities), then their tangent sphere bundles are length isospectral, even if the manifolds are not isometric.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2001 by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top