Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
MEAN CURVATURE 1 SURFACES OF COSTA TYPE IN HYPERBOLIC THREE-SPACE
CELSO J. COSTAVICENTE F. SOUSA NETO
著者情報
ジャーナル フリー

2001 年 53 巻 4 号 p. 617-628

詳細
抄録
In this paper we prove the existence of families of complete mean curvature one surfaces in the hyperbolic three-space. We show that for each Costa-Hoffman-Meeks embedded minimal surface of positive genus in Euclidean three-space, we can produce, by cousin correspondence, a family of complete mean curvature one surfaces in the hyperbolic three-space. These surfaces have positive genus, three ends and the same group of symmetry of the original minimal surfaces. Furthermore, two of the ends approach the same point in the ideal boundary of hyperbolic three-space and the third end is asymptotic to a horosphere. The method we use to produce these results were developed in a recent paper by W. Rossman, M. Umehara and K. Yamada.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2001 by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top