Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
HEAT KERNEL ESTIMATES AND THE GREEN FUNCTIONS ON MULTIPLIER HERMITIAN MANIFOLDS
TOSHIKI MABUCHI
著者情報
ジャーナル フリー

2002 年 54 巻 2 号 p. 259-275

詳細
抄録
Using a standard technique of Li and Yau, we study heat kernel estimates for a special type of compact conformally Kähler manifold, called a multiplier Hermitian manifold of type $\sigma$, which we derive from a Hamiltonian holomorphic vector field on the manifold. In particular, we obtain a lower bound estimate for the Green function averaged by the associated group action. For a fixed $\sigma$, such an estimate is known to play a crucial role in the proof of the uniqueness, modulo a group action, of Einstein multiplier Hermitian structures on a given Fano manifold.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2002 by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top