Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
TORIC VARIETIES WHOSE BLOW-UP AT A POINT IS FANO
LAURENT BONAVERO
著者情報
ジャーナル フリー

2002 年 54 巻 4 号 p. 593-597

詳細
抄録
We classify smooth toric Fano varieties of dimension $n\geq 3$ containing a toric divisor isomorphic to the $(n-1)$-dimensional projective space. As a consequence of this classification, we show that any smooth complete toric variety $X$ of dimension $n\geq 3$ with a fixed point $x\in X$ such that the blow-up $B_x(X)$ of $X$ at $x$ is Fano is isomorphic either to the $n$-dimensional projective space or to the blow-up of the $n$-dimensional projective space along an invariant linear codimension two subspace. As expected, such results are proved using toric Mori theory due to Reid.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2002 by THE TOHOKU UNIVERSITY
前の記事
feedback
Top