Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
GROUPES DE LIE PSEUDO-RIEMANNIENS PLATS
ANNE AUBERTALBERTO MEDINA
著者情報
ジャーナル フリー

2003 年 55 巻 4 号 p. 487-506

詳細
抄録
The determination of affine Lie groups (i.e., which carry a left-invariant affine structure) is an open problem ([12]). In this work we begin the study of Lie groups with a left-invariant, flat pseudo-Riemannian metric (flat pseudo-Riemannian groups). We show that in such groups the left-invariant affine structure defined by the Levi-Civita connection is geodesically complete if and only if the group is unimodular. We also show that the cotangent manifold of an affine Lie group is endowed with an affine Lie group structure and a left-invariant, flat hyperbolic metric. We describe a double extension process which allows us to construct all nilpotent, flat Lorentzian groups. We give examples and prove that the only Heisenberg group which carries a left invariant, flat pseudo-Riemannian metric is the three dimensional one.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2003 by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top