Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
FOCUSING OF SPHERICAL NONLINEAR PULSES IN $\\boldsymbol{R}^{1+3}$, III. SUB AND SUPERCRITICAL CASES
RÉMI CARLESJEFFREY RAUCH
著者情報
ジャーナル フリー

2004 年 56 巻 3 号 p. 393-410

詳細
抄録
We study the validity of geometric optics in $L^\infty$ for nonlinear wave equations in three space dimensions whose solutions, pulse like, focus at a point. If the amplitude of the initial data is subcritical, then no nonlinear effect occurs at leading order. If the amplitude of the initial data is sufficiently big, then strong nonlinear effects occur; we study the cases where the equation is either dissipative or accretive. When the equation is dissipative, pulses are absorbed before reaching the focal point. When the equation is accretive, the family of pulses becomes unbounded.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2004 by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top