Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
GEOMETRIC FLOW ON COMPACT LOCALLY CONFORMALLY KÄHLER MANIFOLDS
YOSHINOBU KAMISHIMALIVIU ORNEA
著者情報
ジャーナル フリー

2005 年 57 巻 2 号 p. 201-221

詳細
抄録
We study two kinds of transformation groups of a compact locally conformally Kähler (l.c.K.) manifold. First, we study compact l.c.K. manifolds by means of the existence of holomorphic l.c.K. flow (i.e., a conformal, holomorphic flow with respect to the Hermitian metric.) We characterize the structure of the compact l.c.K. manifolds with parallel Lee form. Next, we introduce the Lee-Cauchy-Riemann (LCR) transformations as a class of diffeomorphisms preserving the specific $G$-structure of l.c.K. manifolds. We show that compact l.c.K. manifolds with parallel Lee form admitting a non-compact holomorphic flow of LCR transformations are rigid: such a manifold is holomorphically isometric to a Hopf manifold with parallel Lee form.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2005 by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top