Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
$f$-STRUCTURES ON THE CLASSICAL FLAG MANIFOLD WHICH ADMIT (1,2)-SYMPLECTIC METRICS
NIR COHENCAIO J. C. NEGREIROSMARLIO PAREDESSOFIA PINZÓNLUIZ A. B. SAN MARTIN
著者情報
ジャーナル フリー

2005 年 57 巻 2 号 p. 261-271

詳細
抄録
We characterize the invariant $f$-structures $\mathcal{F}$ on the classical maximal flag manifold $\boldsymbol{F}(n)$ which admit (1,2)-symplectic metrics. This provides a sufficient condition for the existence of $\mathcal{F}$-harmonic maps from any cosymplectic Riemannian manifold onto $\boldsymbol{F}(n)$. In the special case of almost complex structures, our analysis extends and unifies two previous approaches: a paper of Brouwer in 1980 on locally transitive digraphs, involving unpublished work by Cameron; and work by Mo, Paredes, Negreiros, Cohen and San Martin on cone-free digraphs. We also discuss the construction of (1,2)-symplectic metrics and calculate their dimension. Our approach is graph theoretic.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2005 by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top