Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
CATANESE-CILIBERTO SURFACES OF FIBER GENUS THREE WITH UNIQUE SINGULAR FIBER
HIROTAKA ISHIDA
著者情報
ジャーナル フリー

2006 年 58 巻 1 号 p. 33-69

詳細
抄録
In this paper, we study a minimal surface of general type with $p_g=q=1, K_S^2=3$ which we call a Catanese-Ciliberto surface. The Albanese map of this surface gives a fibration of curves over an elliptic curve. For an arbitrary elliptic curve $E$, we obtain the Catanese-Ciliberto surface which satisfies $\operatorname{Alb}(S)\cong E$, has no (-2)-curves and has a unique singular fiber. Furthermore, we show that the number of the isomorphism classes satisfying these conditions is four if $E$ has no automorphism of complex multiplication type.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2006 by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top