Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
ON RAMANUJAN'S CUBIC CONTINUED FRACTION AS A MODULAR FUNCTION
BUMKYU CHOJA KYUNG KOOYOON KYUNG PARK
著者情報
ジャーナル フリー

2010 年 62 巻 4 号 p. 579-603

詳細
抄録
We first extend the results of Chan ([4]) and Baruah ([2]) on the modular equations of Ramanujan's cubic continued fraction $C(\tau)$ to all primes $p$ by finding the affine models of modular curves and then derive Kronecker's congruence relations for these modular equations. We further show that by its singular values we can generate ray class fields modulo 6 over imaginary quadratic fields and find their class polynomials after proving that $1/C(\tau)$ is an algebraic integer.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2010 by THE TOHOKU UNIVERSITY
前の記事
feedback
Top