Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
ALGEBRAIC INDEPENDENCE RESULTS RELATED TO PATTERN SEQUENCES IN DISTINCT $\langle\lowercase{q}, \lowercase{r}\rangle$-NUMERATION SYSTEMS
YOHEI TACHIYA
著者情報
ジャーナル フリー

2012 年 64 巻 3 号 p. 427-438

詳細
抄録
In this paper, we prove the algebraic independence over $\boldsymbol{C}(z)$ of the generating functions of pattern sequences defined in distinct $\langle q, r\rangle$-numeration systems. Our result asserts that any nontrivial linear combination over $\boldsymbol{C}$ of pattern sequences chosen from distinct $\langle q, r \rangle$-numeration systems can not be a linear recurrence sequence. As an application, we give a linear independence over $\boldsymbol{C}$ of the pattern sequences.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2012 by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top