Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
ON TAUBER'S SECOND TAUBERIAN THEOREM
RICARDO ESTRADAJASSON VINDAS
著者情報
ジャーナル フリー

2012 年 64 巻 4 号 p. 539-560

詳細
抄録
We study Tauberian conditions for the existence of Cesàro limits in terms of the Laplace transform. We also analyze Tauberian theorems for the existence of distributional point values in terms of analytic representations. The development of these theorems is parallel to Tauber's second theorem on the converse of Abel's theorem. For Schwartz distributions, we obtain extensions of many classical Tauberians for Cesàro and Abel summability of functions and measures. We give general Tauberian conditions in order to guarantee $(\mathrm{C}, \beta)$ summability for a given order $\beta$. The results are directly applicable to series and Stieltjes integrals, and we therefore recover the classical cases and provide new Tauberians for the converse of Abel's theorem where the conclusion is Cesàro summability rather than convergence. We also apply our results to give new quick proofs of some theorems of Hardy-Littlewood and Szász for Dirichlet series.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2012 by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top