Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
VISIBLE ACTIONS ON FLAG VARIETIES OF TYPE C AND A GENERALIZATION OF THE CARTAN DECOMPOSITION
YUICHIRO TANAKA
著者情報
ジャーナル フリー

2013 年 65 巻 2 号 p. 281-295

詳細
抄録
We give a generalization of the Cartan decomposition for connected compact Lie groups of type C motivated by the work on visible actions of T. Kobayashi [J. Math. Soc. Japan, 2007] for type A groups. Let $G$ be a compact simple Lie group of type C, $K$ a Chevalley–Weyl involution-fixed point subgroup and $L, H$ Levi subgroups. We firstly show that $G=LKH$ holds if and only if either Case I: $(G, H)$ and $(G, L)$ are both symmetric pairs or Case II: $L$ is a Levi subgroup of maximal dimension and $H$ is an arbitrary maximal Levi subgroup up to switch of $L, H$. This classification gives a visible action of $L$ on the generalized flag variety $G/H$, as well as that of the $H$-action on $G/L$ and of the $G$-action on the direct product of $G/L$ and $G/H$. Secondly, we find a generalized Cartan decomposition $G=LBH$ explicitly, where $B$ is a subset of $K$. An application to multiplicity-free theorems of representations is also discussed.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2013 THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top