Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
REFLECTION ARRANGEMENTS ARE HEREDITARILY FREE
TORSTEN HOGEGERHARD RÖHRLE
著者情報
ジャーナル フリー

2013 年 65 巻 3 号 p. 313-319

詳細
抄録
Suppose that $W$ is a finite, unitary, reflection group acting on the complex vector space $V$. Let $\mathcal{A} = \mathcal{A}(W)$ be the associated hyperplane arrangement of $W$. Terao has shown that each such reflection arrangement $\mathcal{A}$ is free. Let $L(\mathcal{A})$ be the intersection lattice of $\mathcal{A}$. For a subspace $X$ in $L(\mathcal{A})$ we have the restricted arrangement $\mathcal{A}^X$ in $X$ by means of restricting hyperplanes from $\mathcal{A}$ to $X$. In 1992, Orlik and Terao conjectured that each such restriction is again free. In this note we settle the outstanding cases confirming the conjecture.In 1992, Orlik and Terao also conjectured that every reflection arrangement is hereditarily inductively free. In contrast, this stronger conjecture is false however; we give two counterexamples.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2013 THE TOHOKU UNIVERSITY
次の記事
feedback
Top