Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
ON THE TWO-VARIABLES MAIN CONJECTURE FOR EXTENSIONS OF IMAGINARY QUADRATIC FIELDS
STÉPHANE VIGUIÉ
著者情報
ジャーナル フリー

2013 年 65 巻 3 号 p. 441-465

詳細
抄録
Let $p$ be a prime number at least 5, and let $k$ be an imaginary quadratic number field in which $p$ decomposes into two conjugate primes. Let $k_\infty$ be the unique $\boldsymbol{Z}_p^2$-extension of $k$, and let $K_\infty$ be a finite extension of $k_\infty$, abelian over $k$. We prove that in $K_\infty$, the characteristic ideal of the projective limit of the $p$-class group coincides with the characteristic ideal of the projective limit of units modulo elliptic units. Our approach is based on Euler systems, which were first used in this context by Rubin.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2013 THE TOHOKU UNIVERSITY
前の記事
feedback
Top