Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
ON A CERTAIN NILPOTENT EXTENSION OVER $\boldsymbol{Q}$ OF DEGREE 64 AND THE 4-TH MULTIPLE RESIDUE SYMBOL
FUMIYA AMANO
著者情報
ジャーナル フリー

2014 年 66 巻 4 号 p. 501-522

詳細
抄録

In this paper, we introduce the 4-th multiple residue symbol $[p_1,p_2,p_3,p_4]$ for certain four prime numbers $p_i$'s, which extends the Legendre symbol $\big(\frac{p_1}{p_2}\big)$ and the Rédei triple symbol $[p_1,p_2,p_3]$ in a natural manner. For this we construct concretely a certain nilpotent extension $K$ over $\boldsymbol{Q}$ of degree 64, where ramified prime numbers are $p_1, p_2$ and $p_3$, such that the symbol $[p_1,p_2,p_3,p_4]$ describes the decomposition law of $p_4$ in the extension $K/\boldsymbol{Q}$. We then establish the relation of our symbol $[p_1,p_2,p_3,p_4]$ and the 4-th arithmetic Milnor invariant $\mu_2(1234)$ (an arithmetic analogue of the 4-th order linking number) by showing $[p_1,p_2,p_3,p_4] = (-1)^{\mu_2(1234)}$.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2014 THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top