Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
ON GOOD REDUCTION OF SOME K3 SURFACES RELATED TO ABELIAN SURFACES
YUYA MATSUMOTO
著者情報
ジャーナル フリー

2015 年 67 巻 1 号 p. 83-104

詳細
抄録

The Néron–Ogg–Šafarevič criterion for abelian varieties tells that the Galois action on the $l$-adic étale cohomology of an abelian variety over a local field determines whether the variety has good reduction or not. We prove an analogue of this criterion for a certain type of K3 surfaces closely related to abelian surfaces. We also prove its $p$-adic analogue. This paper includes T. Ito's unpublished result on Kummer surfaces.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2015 THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top