Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
ALEXANDROV'S ISODIAMETRIC CONJECTURE AND THE CUT LOCUS OF A SURFACE
PEDRO FREITASDAVID KREJČIŘĺK
著者情報
ジャーナル フリー

2015 年 67 巻 3 号 p. 405-417

詳細
抄録

We prove that Alexandrov's conjecture relating the area and diameter of a convex surface holds for the surface of a general ellipsoid. This is a direct consequence of a more general result which estimates the deviation from the optimal conjectured bound in terms of the length of the cut locus of a point on the surface. We also prove that the natural extension of the conjecture to general dimension holds among closed convex spherically symmetric Riemannian manifolds. Our results are based on a new symmetrization procedure which we believe to be interesting in its own right.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2015 THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top