Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
ISOMETRIC DEFORMATIONS OF CUSPIDAL EDGES
Kosuke NaokawaMasaaki UmeharaKotaro Yamada
著者情報
ジャーナル フリー

2016 年 68 巻 1 号 p. 73-90

詳細
抄録

Along cuspidal edge singularities on a given surface in Euclidean 3-space $\boldsymbol{R}^3$, which can be parametrized by a regular space curve $\hat\gamma (t)$, a unit normal vector field $\nu$ is well-defined as a smooth vector field of the surface. A cuspidal edge singular point is called generic if the osculating plane of $\hat\gamma (t)$ is not orthogonal to $\nu$. This genericity is equivalent to the condition that its limiting normal curvature $\kappa_\nu$ takes a non-zero value. In this paper, we show that a given generic (real analytic) cuspidal edge $f$ can be isometrically deformed preserving $\kappa_\nu$ into a cuspidal edge whose singular set lies in a plane. Such a limiting cuspidal edge is uniquely determined from the initial germ of the cuspidal edge.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2016 THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top