Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
RICHNESS OF SMITH EQUIVALENT MODULES FOR FINITE GAP OLIVER GROUPS
Toshio Sumi
著者情報
ジャーナル フリー

2020 年 68 巻 3 号 p. 457-469

詳細
抄録

Let $G$ be a finite group not of prime power order. Two real $G$-modules $U$ and $V$ are $\mathcal{P}(G)$-connectively Smith equivalent if there exists a homotopy sphere with smooth $G$-action such that the fixed point set by $P$ is connected for all Sylow subgroups $P$ of $G$, it has just two fixed points, and $U$ and $V$ are isomorphic to the tangential representations as real $G$-modules respectively. We study the $\mathcal{P}(G)$-connective Smith set for a finite Oliver group $G$ of the real representation ring consisting of all differences of $\mathcal{P}(G)$-connectively Smith equivalent $G$-modules, and determine this set for certain nonsolvable groups $G$.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2020 THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top