2018 年 70 巻 4 号 p. 511-521
We apply a recent theorem of Li and the first author to give some criteria for the K-stability of Fano varieties in terms of anticanonical $\mathbb{Q}$-divisors. First, we propose a condition in terms of certain anti-canonical $\mathbb{Q}$-divisors of given Fano variety, which we conjecture to be equivalent to the K-stability. We prove that it is at least a sufficient condition and also related to the Berman-Gibbs stability. We also give another algebraic proof of the K-stability of Fano varieties which satisfy Tian’s alpha invariants condition.
この記事は最新の被引用情報を取得できません。