2018 年 70 巻 4 号 p. 633-648
Let $X$ be a locally compact separable metric space and $m$ a positive Radon measure on $X$ with full topological support. Let ${\mathbf{M}}=(P_x,X_t)$ be an $m$-symmetric Markov process on $X$. Let $(\mathcal{E},\mathcal{D}(\mathcal{E}))$ be the Dirichlet form on $L^2(X;m)$ generated by $\mathbf{M}$. Let $\mu$ be a positive Radon measure in the Green-tight Kato class and $A^\mu_t$ the positive continuous additive functional in the Revuz correspondence to $\mu$. Under certain conditions, we establish the large deviation principle for positive continuous additive functionals $A^{\mu}_t$ of symmetric Markov processes.
この記事は最新の被引用情報を取得できません。