Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
THE RANGE AND PSEUDO-INVERSE OF A PRODUCT
LU SHIJIE
著者情報
ジャーナル フリー

1987 年 39 巻 1 号 p. 89-94

詳細
抄録
By definition the cosine of the angle between the two subspaces M and N is { \left| {u, v} \ ight|:u \in M, v \in N, \left// u \ ight// = 1 = \left// v \ ight//} . For operators A and B with closed range in Hilbert spaces, AB has closed range if and only if the angle between ker A and B({(\ker AB)^ ⊥ }) is positive. Moreover, if we denote by {A^Ψ } the pseudo-inverse of A, then {(AB)^Ψ } = {B^Ψ }{A^Ψ } if and only if B({(\ker AB)^ ⊥ }) \subset {(\ker A)^ ⊥ } and {A^ * }({(\ker {B^ * }{A^ * })^ ⊥ }) \subset {(\ker {B^ * })^ ⊥ }.
著者関連情報

この記事は最新の被引用情報を取得できません。

© by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top