Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
MINIMAL SURFACES IN R3 WITH DIHEDRAL SYMMETRY
WAYNE ROSSMAN
著者情報
ジャーナル フリー

1995 年 47 巻 1 号 p. 31-54

詳細
抄録
We construct new examples of immersed minimal surfaces with catenoid ends and finite total curvature, of both genus zero and higher genus. In the genus zero case, we classify all such surfaces with at most 2n+1 ends, and with symmetry group the natural Z2 extension of the dihedral group Dn
The surfaces are constructed by proving existence of the conjugate surfaces. We extend this method to cases where the conjugate surface of the fundamental piece is noncompact and is not a graph over a convex plane domain.
著者関連情報

この記事は最新の被引用情報を取得できません。

© by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top