Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
IRREDUCIBLE CONSTANT MEAN CURVATURE 1 SURFACES IN HYPERBOLIC SPACE WITH POSITIVE GENUS
WAYNE ROSSMANMASAAKI UMEHARAKOTARO YAMADA
著者情報
ジャーナル フリー

1997 年 49 巻 4 号 p. 449-484

詳細
抄録
In this work we give a method for constructing a one-parameter family of complete CMC-1 (i.e. constant mean curvature 1) surfaces in hyperbolic 3-space that correspond to a given complete minimal surface with finite total curvature in Euclidean 3-space. We show that this one-parameter family of surfaces with the same symmetry properties exists for all given minimal surfaces satisfying certain conditions. The surfaces we construct in this paper are irreducible, and in the process of showing this, we also prove some results about the reducibility of surfaces.
Furthermore, in the case that the surfaces are of genus 0, we are able to make some estimates on the range of the parameter for the one-parameter family.
著者関連情報

この記事は最新の被引用情報を取得できません。

© by THE TOHOKU UNIVERSITY
次の記事
feedback
Top