Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
THE SPLITTING AND DEFORMATIONS OF THE GENERALIZED GAUSS MAP OF COMPACT CMC SURFACES
REIKO MIYAOKA
著者情報
ジャーナル フリー

1999 年 51 巻 1 号 p. 35-53

詳細
抄録
We show that a non-conformal harmonic map from a Riemann surface into the Euclidean n-sphere can be considered as a component of minimal surfaces in higher dimensional spheres. In the same principle, we show that the generalized Gauss map of constant mean curvature surfaces in the 3-sphere globally splits into two non-confirmal harmonic maps into 2-sphere. Using this, we obtain ezamples of non-trivial harmonic map deformations for compact Riemann durfaces of arbitrary positive genus. In particular, we give a lower bound for the nullity(as harmonic maps)of the feneralized Gauss map of compact CMC surfaces in the 3-sphere. Furthermore, we obtain an affirmative answer to Lawson's conjectire for superconformal minimal surfaces in 4m-spheres.
著者関連情報

この記事は最新の被引用情報を取得できません。

© by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top