抄録
The engineered biodegradable plastics polylactic acid (PLA) and polybutylene succinate (PBS) were irradiated by an ion beam under argon gas and subsequently observed by atomic force microscopy. The PLA and PBS substrates were found to have smooth surfaces after ion beam irradiation with an accelerating voltage of 5 keV. The decomposition rate of the ester group, identified by Fourier transform infrared spectroscopy, increased with increasing acceleration voltage. The quantity of carbide, identified by Raman spectroscopy, was also found to increase with increasing accelerating voltage. It was difficult to observe the D peak. Based on the above results, it was concluded that the carbonization layer (self-carbonization layer) obtained mainly composed of graphite. A Ti thin film was added to the test specimen surface by ion beam mixing, forming a self-carbonization layer, and its adhesion was analyzed by performing a scratch test. High adhesion was obtained at an accelerating voltage of 5 keV. Similar results were obtained for PBS, which has low heat resistance.