Transactions of the Materials Research Society of Japan
Online ISSN : 2188-1650
Print ISSN : 1382-3469
ISSN-L : 1382-3469
Regular Papers
Near-Edge X-ray Absorption Fine-Structure Study on Hydrogenated Boron-Doped Ultrananocrystalline Diamond/Amorphous Carbon Composite Films Prepared by Coaxial Arc Plasma Deposition
Yūki KatamuneSatoshi TakeichiShinya OhmagariHiroyuki SetoyamaTsuyoshi Yoshitake
Author information
JOURNAL FREE ACCESS

2015 Volume 40 Issue 3 Pages 243-246

Details
Abstract
Boron-doped ultrananocrystalline diamond/amorphous carbon composite films were deposited in the hydrogen pressure range up to 26.7 Pa by coaxial arc plasma deposition with a boron-blended graphite target, and the effects of hydrogenation on the electrical properties and chemical bonding structures of the films were discussed by near-edge X-ray absorption fine structure (NEXAFS) studies. The electrical conductivity decreased with increasing hydrogen pressure. Whereas the nonhydrogenated films showed a semimetallic behavior in the temperature dependence of the electrical conductivity, the hydrogenated films exhibited semiconducting behavior. The boron content estimated from X-ray photoelectron spectroscopic measurements hardly changed with the hydrogen pressure. NEXAFS spectra showed that π* resonance related to sp2-bonded carbon is evidently enhanced with decreasing hydrogen pressure, which is accompanied by a selective etching of sp2 carbon. The results indicate that the carrier transports in UNCD/a-C films are strongly influenced by chemical bonding structure at a-C or grain boundaries.
Content from these authors
© 2015 The Materials Research Society of Japan
Previous article Next article
feedback
Top