IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Regular Section
From Homogeneous to Heterogeneous: An Analytical Model for IEEE 1901 Power Line Communication Networks in Unsaturated Conditions
Sheng HAOHuyin ZHANG
著者情報
ジャーナル 認証あり

2019 年 E102.B 巻 8 号 p. 1636-1648

詳細
抄録

Power line communication (PLC) networks play an important role in home networks and in next generation hybrid networks, which provide higher data rates (Gbps) and easier connectivity. The standard medium access control (MAC) protocol of PLC networks, IEEE 1901, uses a special carrier sense multiple access with collision avoidance (CSMA/CA) mechanism, in which the deferral counter technology is introduced to avoid unnecessary collisions. Although PLC networks have achieved great commercial success, MAC layer analysis for IEEE 1901 PLC networks received limited attention. Until now, a few studies used renewal theory and strong law of large number (SLLN) to analyze the MAC performance of IEEE 1901 protocol. These studies focus on saturated conditions and neglect the impacts of buffer size and traffic rate. Additionally, they are valid only for homogeneous traffic. Motivated by these limitations, we develop a unified and scalable analytical model for IEEE 1901 protocol in unsaturated conditions, which comprehensively considers the impacts of traffic rate, buffer size, and traffic types (homogeneous or heterogeneous traffic). In the modeling process, a multi-layer discrete Markov chain model is constructed to depict the basic working principle of IEEE 1901 protocol. The queueing process of the station buffer is captured by using Queueing theory. Furthermore, we present a detailed analysis for IEEE 1901 protocol under heterogeneous traffic conditions. Finally, we conduct extensive simulations to verify the analytical model and evaluate the MAC performance of IEEE 1901 protocol in PLC networks.

著者関連情報
© 2019 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top