抄録
This letter proposes a new adaptive filtering method that uses the last L desired signal samples as an extra input vector, besides the existing input data, to reduce mean square error. We have improved the convergence rate by adopting the squared norm of the past error samples, in addition to the modified cost function. The modified variable error-data normalized step-size least mean square algorithm provides fast convergence, ensuring a small final misadjustment. Simulation results indicate its superior mean square error performance, while its convergence rate equals that of existing methods. In addition, the proposed algorithm shows superior tracking capability when the system is subjected to an abrupt disturbance.