IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Special Section on Fundamental Issues on Deployment of Ubiquitous Sensor Networks
Adaptive 3-Dimensional Topology Control for Wireless Ad-Hoc Sensor Networks
Junseok KIMJongho SHINYounggoo KWON
著者情報
ジャーナル 認証あり

2010 年 E93.B 巻 11 号 p. 2901-2911

詳細
抄録
Developing an adaptive 3-dimensional (3D) topology control algorithm is important because most wireless nodes are mobile and deployed in buildings. Moreover, in buildings, wireless link qualities and topologies change frequently due to various objects and the interference from other wireless devices. Previous topology control algorithms can suffer significant performance degradation because they only use the Euclidean distance for the topology construction. In this paper, we propose a novel adaptive 3D topology control algorithm for wireless ad-hoc sensor networks, especially in indoor environments. The proposed algorithm adjusts the minimum transmit power adaptively with considering the interference effect. To construct the local topology, each node divides the 3D space, a sphere centered at itself, into k equal cones by using Platonic solid (i.e., regular k-hedron) and selects the neighbor that requires the lowest transmit power in each cone. Since the minimum transmit power values depend on the effect of interferences, the proposed algorithm can adjust topology adaptively and preserve the network connectivity reliably. To evaluate the performance of algorithms, we conduct various experiments with simulator and real wireless platforms. The experimental results show that the proposed algorithm is superior to the previous algorithms in terms of the packet delivery ratio and the energy consumption with relatively low complexity.
著者関連情報
© 2010 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top