IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Regular Section
Multi-Target Localization Based on Sparse Bayesian Learning in Wireless Sensor Networks
Bo XUELinghua ZHANGYang YU
著者情報
ジャーナル 認証あり

2016 年 E99.B 巻 5 号 p. 1093-1100

詳細
抄録
Because accurate position information plays an important role in wireless sensor networks (WSNs), target localization has attracted considerable attention in recent years. In this paper, based on target spatial domain discretion, the target localization problem is formulated as a sparsity-seeking problem that can be solved by the compressed sensing (CS) technique. To satisfy the robust recovery condition called restricted isometry property (RIP) for CS theory requirement, an orthogonalization preprocessing method named LU (lower triangular matrix, unitary matrix) decomposition is utilized to ensure the observation matrix obeys the RIP. In addition, from the viewpoint of the positioning systems, taking advantage of the joint posterior distribution of model parameters that approximate the sparse prior knowledge of target, the sparse Bayesian learning (SBL) approach is utilized to improve the positioning performance. Simulation results illustrate that the proposed algorithm has higher positioning accuracy in multi-target scenarios than existing algorithms.
著者関連情報
© 2016 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top