IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

A new classification-like scheme for spectrum sensing using spectral correlation and stacked denoising autoencoders
Hang LIUXu ZHUTakeo FUJII
著者情報
ジャーナル 認証あり 早期公開

論文ID: 2017EBP3447

この記事には本公開記事があります。
詳細
抄録

In this paper, we propose a novel primary user detection scheme for spectrum sensing in cognitive radio. Inspired by the conventional signal classification approach, the spectrum sensing is translated into a classification problem. On the basis of feature-based classification, the spectral correlation of a second-order cyclostationary analysis is applied as the feature extraction method, whereas a stacked denoising autoencoders network is applied as the classifier. Two training methods for signal detection, interception-based detection and simulation-based detection, are considered, for different prior information and implementation conditions. In an interception-based detection method, inspired by the two-step sensing, we obtain training data from the interception of actual signals after a sophisticated sensing procedure, to achieve detection without priori information. In addition, benefiting from practical training data, this interceptionbased detection is superior under actual transmission environment conditions. The alternative, a simulation-based detection method utilizes some undisguised parameters of the primary user in the spectrum of interest. Owing to the diversified predetermined training data, simulation-based detection exhibits transcendental robustness against harsh noise environments, although it demands a more complicated classifier network structure. Additionally, for the above-described training methods, we discuss the classifier complexity over implementation conditions and the trade-off between robustness and detection performance. The simulation results show the advantages of the proposed method over conventional spectrum-sensing schemes.

著者関連情報
© 2018 The Institute of Electronics, Information and Communication Engineers
feedback
Top